

Another Way to View Propagation Predictions for DXing and Contesting

By R. Dean Straw, N6BV Senior Assistant Technical Editor, ARRL April 22, 2006 International DX Convention Visalia, CA

I will talk about the following:

- Area-coverage predictions using VOAAREA.
- I will compare *VOAAREA* predictions to actual results for the 2005 Sweepstakes Phone contest.
- I will discuss how to make customized antennas for *VOAAREA*.

The VOAAREA Program

- *VOAAREA* is one of the programs in the software suite that come with *VOACAP*.
- *VOAAREA* creates customizable contours on several selectable map projections.
- One of the key parameters is setting the antenna properly, for both receiver and transmitter.

Table of Sigs/Elevs -- Chicago

04 =	Zone,	Nov.,	CA (S	an Fra	ncisco) to II	. (Chi	cago),	SSN =	Very	Low,	S-Units
	3.8	3.8	7.1	7.1	14.1	14.1	21.2	21.2	28.6	28.6		
GMT	Sig	Elev	Sig	Elev	Sig	Elev	Sig	Elev	Sig	Elev		
0	9+	29.3	9+	22.6	9+	2.6	4	5.9	-	-		
1	9+	22.1	9+	13.9	9+	6.1	-	-	-	-		
2	9+	22.9	9+	15.7	9	6.3	-	-	-	-		
3	9+	24.3	9	10.3	4	6.7	-	-	-	-		
4	9+	25.7	9+	11.4	2	5.3	-	-	-	-		
5	9+	26.2	9+	11.5	2	7.6	-	-	-	-		
6	9+	25.9	9+	11.1	4	7.5	-	-	-	-		
7	9+	25.2	9+	10.6	6	7.2	-	-	-	-		D 1 5
8	9+	24.7	9+	17.6	8	7.0	-	-	-	-		Decent 15
9	9+	24.8	9+	17.6	7	7.1	-	-	-	-		
10	9+	25.7	9+	19.4	5	7.5	-	-	-	-		meter opening
11	9+	26.8	9	4.1	-	-	-	-	-	-		
12	9+	27.0	9	4.2	-	-	-	-	-	-		prodicted
13	9+	25.6	9+	18.3	7	7.7	-	-	-			predicted
14	9+	31.5	9+	14.9	9+	4.9	-	-	- /	-		•
15	9	27.5	9+	22.3	9+	2.4	9	6.3		-		
16	5	34.7	9	15.6	9+	15.1	9+	6.4	1	6.0		0 10
17	-	-	9	22.4	9+	13.8	9+	3.1	5	6.0		Some 10
18	-	-	7	22.5	9+	13.1	9	2.3	7	5.8		
19	-	-	7	23.5	9+	13.0	9	2.2	8	5.9		meter signals
20	-	-	7	23.7	9+	13.8	9+	2.6	8	5.8		meter signais
21	-	-	9	17.9	9+	14.3	9+	3.1	6	6.1		prodicted
22	7	34.9	9+	15.4	9+	14.8	9+	3.6	1	6.0		predicted
23	9	30.9	9+	21.9	9+	2.1	9+	5.9	_	_		^

I've presented this tabular format in various forums in the past.

Table of Sigs/Elevs – East Coast

05 =	Zone,	Nov.,	CA (S	an Fra	ncisco) to W	ashing	ton (D	.C.),	SSN =	Very Low,	S-Units
	3.8	3.8	7.1	7.1	14.1	14.1	21.2	21.2	28.6	28.6		
GMT	Sig	Elev	Sig	Elev	Sig	Elev	Sig	Elev	Sig	Elev		
0	9	21.9	9+	15.7	9	13.3	-	-	-	-		
1	9+	22.1	9+	17.0	1	13.7	-	-	-	-		
2	9+	23.2	9+	9.5	4	1.2	-	-	-	-		
3	9+	24.7	9+	10.8	1	1.6	-	-	-	-		
4	9+	25.9	9+	11.9	1	2.0	-	-	-	-		
5	9+	26.3	9+	12.0	2	2.1	-	-	-	-		
6	9+	25.8	9+	11.3	3	2.0	-	-	-	-		
7	9+	25.0	9+	10.7	5	1.8	-	-	-	-		
8	9+	24.5	9+	10.3	6	1.6	-	-	-	-		NT 10 (
9	9+	24.8	9+	10.5	6	1.7	-	-	-	-		No 10 meters
10	9+	25.8	9+	11.3	2	2.1	-	-	-	-		
11	9+	26.7	9+	12.4	_	-	-	-	-	- 4		
12	9+	26.0	9+	11.7	1	2.3	-	-	-	-		
13	9	24.2	9+	19.2	8	1.9	-	-	-	-		
14	8	23.9	9+	16.1	8	14.4	1	1.3	-	-	1 /	,
15	4	26.9	9	15.4	9+	8.5	-	-	-	-	15	meters
16	-	_	8	16.7	9+	7.7	4	13.1	-	-	_	
17	-	_	5	21.7	9+	7.4	8	12.6	-	-	- do	esn't last
18	-	_	3	22.7	9	15.7	8	13.0		_	uu	con t last
19	-	-	3	24.1	9+	9.0	9	13.1	-	-	1	• ~
20	-	-	6	19.2	9+	8.5	9	13.0	_	-	101	1g
21	1	34.8	8	17.6	9+	8.4	7	13.3	-	-		C
22	4	27.5	9	15.9	9+	8.4	2	13.2	-	-		
23	8	23.3	9+	21.7	9+	9.1	2	13.2	-	-		

Complicated, isn't it??

NTIA/ITS

Sweepstakes 2005 Modeling Assumptions for *VOAAREA*

- Antennas: 3-element Yagi at 55 feet over flat ground for 20, 15 and 10 meters.
- Antennas for 40 and 80 meters: Dipoles at 75 feet over flat ground.
- Antenna are a little smaller than my usual assumptions but represent realistic stations.
- 1500 W of RF power.
- Very Low SSN = 10.

80-Meter Coverage

- Unless you have really big antennas on 80 meters, this band can be very challenging in Sweepstakes from California.
- Particularly to the East Coast.
- The area coverage plots that follow are centered on Chicago, Washington (DC) and San Francisco.

CHICAGO [Dipole @ 7] 1.5kW 80deg 02ut 3.800MHz Nov 10ssn

SAN FRANCISCO [Dipole @ 7] 1.5kW 80deg 02ut 3.800MHz Nov 10ssn

AREADATA\DEFAULT\SF4.V19 Tx location to grid of Rx

SDBW

40-Meter Coverage

- Bigger antennas help on 40 meters (although dipoles don't do badly).
- Big antennas are needed on phone, especially to run the East Coast.
- QRO is important for rate on 40.
- There are times when the East Coast and Midwest go "long skip" and then Californians can have some advantages.

NTIA/ITS

SDBW

AREADATA\DEFAULT\WASH7.V19

Tx location to grid of Rx 130W 120W 100W 60 N 110W 801 70W 50N 60W 60 N 115 89+7 60W 89+1 40 N 03 89 87 85 50N 83 10 NI 70W CCIR coefficients \$ -103 40x 40 gridsize 40 N W3 has skip 0 zone in mid East Coast 30N on 40 in the ÷ evening 120W 1000 110W 2000 20N 100W 3000 90W 4000 130W 80W 5000km n NTIA/ITS

AREADATA\DEFAULT\SF7.V19

40-Meter "Movie" Sequence

- From 23 UTC to 12 UTC (late afternoon to East Coast sunrise).
- Assumes 75-foot high 40-meter dipoles.
- Assumes 1500 W.

SAN FRANCISCO [Dipole @ 7] 1.5kW 80deg 23ut 7.200MHz Nov 10ssn

SDBW

Tx location to grid of Rx

AREADATA\DEFAULT\SF7.V16

SDBW

AREADATA\DEFAULT\SF7.V17

SDBW

AREADATA\DEFAULT\SF7.V19

AREADATA\DEFAULT\SF7A.V11

SDBW

AREADATA\DEFAULT\SF7A.V12

SDBW

SDBW AREADATA\DEFAULT\SF7A.V14

AREADATA\DEFAULT\SF7A.V15

Tx location to grid of Rx

AREADATA\DEFAULT\SF7A.V16

SDBW

SAN FRANCISCO [Dipole @ 7] 1.5kW 80deg 09ut 7.200MHz Nov 10ssn

SDBW

AREADATA\DEFAULT\SF7A.V17

Tx location to grid of Rx

SDBW AREADATA\DEFAULT\SF7A.V18

SAN FRANCISCO [Dipole @ 7] 1.5kW 80deg 11ut 7.200MHz Nov 10ssn

SAN FRANCISCO [Dipole @ 7] 1.5kW 80deg 12ut 7.200MHz Nov 10ssn

20-Meter Coverage

- 20 is usually a zoo on phone, particularly during low part of Solar Cycle, when 15 and 10 meters are marginal or non-existent.
- Big stacks rule, although 1500 W and a 3element Yagi can easily run rate.
- Moral of this story: Run QRO if you possibly can, with big antennas!

CHICAGO [3-el Yagi] 1.5kW 80deg 22ut 14.200MHz Nov 10ssn

60 N

50N

40 N

30N

130W

NTIA/ITS

20-Meter Movie Sequence

- From 13 UTC to 02 UTC (W6 sunrise to evening)
- Assumes 3-element Yagis at 55 feet.
- Assumes 1500 W.

AREADATA\DEFAULT\SF14A.V12

 I.Skw sodeg 14dt 14.200MH2 NOV 10SSN
 SDBW

 AREADATA\DEFAULT\SF14A.V13

 80w
 70w

 50N
 60w

AREADATA\DEFAULT\SF14A.V14 Tx location to grid of Rx 120W 100W 60 N 130W 110W 80W 70W 50N 60W 60 N 89+7 60W 89+1 40 N 89 87 85 50N 83 NII 2005: 86 Qs -103 70W 30N CCIR coefficients 139 40x 40 gridsize 40N 103 Da 30 N 20N ര 120W 1000 110W 2000 20N 100W 3000 90W 4000 80W 5000KM 130W 0 NTIA/ITS

AREADATA\DEFAULT\SF14A.V15

Tx location to grid of Rx

AREADATA\DEFAULT\SF14A.V16

Tx location to grid of Rx

AREADATA\DEFAULT\SF14.V12

AREADATA\DEFAULT\SF14.V17 Tx location to grid of Rx 130W 120W 100W 60 N 110W 80W 70W 50N 60W 60 N 89+7 60W 89+1 40 N 127 89 87 85 50N 83 NI 2005: 124/0 Qs $_{30N}^{70W}$ CCIR coefficients 139 40x 40 gridsize 40 N - 51 -13941 \$ 03 93 Last hurrah on 30N 20N -115 60 20 120W 1000 110W 2000 20N 100W 3000 90W 4000 80W 5000km 130W n NTIA/ITS

120W 100W 60 N 130W 110W 80W 70W 50N 60W 60 N 89+7 60W <u>89+1</u> 40 N 89 87 85 50N 83 NI 2005: 24/0 Qs 70W 30N CCIR coefficients \$ -139 40x 40 gridsize 03 40 N -13**327115** 139 Propagation gets a little 20N better for a 30N while in Midwest 20N 100W 3000 120W 1000 110W 2000 90W 4000 80W 5000km 130W n NTIA/ITS

SDBW AREADATA\DEFAULT\SF14.V18

AREADATA\DEFAULT\SF14.V19

15-Meter Coverage

- During low portion of Solar Cycle, 15 meters will be reasonably good to Midwest, but marginal to East Coast.
- Big stacks help, of course, but relatively modest 15-meter beams can do well on 15.

CHICAGO [3-el Yagi] 1.5kW 80deg 18ut 21.200MHz Nov 10ssn

Tx location to grid of Rx AREADATA\DEFAULT\SF21.V11 130W 120W 100W 110W 60 N 80W 70W 50N 60W 60 N -103 20+7 60W 89+1 40 N 89 87 85 50N 83 NI 70W 30N CCIR coefficients \$\$ -127 40x 40 gridsize 115 40 N -137 W6 covers Midwest well on 15 in late 30N ²⁰morning but not well to East Coast 110W 2000 20N 100W 3000 90W 4000 80W 5000KM 130W 120W 1000

NTIA/ITS

15-Meter Movie Sequence

- 14 to 01 UTC (W6 sunrise at at 1443 UTC to sunset at 0103 UTC).
- Assumes 3-element 15-meter Yagis at each end at 55 feet.
- Assumes 1500 W.

AREADATA\DEFAULT\SF21A.V11

AREADATA\DEFAULT\SF21A.V13

Tx location to grid of Rx AREADATA\DEFAULT\SF21.V11 130W 120W 100W 60 N 110W 80W 70W 50N 60W 60 N -103 89+7 60W <u>89+1</u> 40 N 89 87 85 50N 83 NII 2005: 53 Qs 70W CCIR coefficients \$ -127 40x 40 gridsize 115 40N -137 S5 to East Coast 30 N 20N 25 120W 1000 110W 2000 20N 100W 3000 90W 4000 80W 5000KM 130W

n

NTIA/ITS

Tx location to grid of Rx AREADATA\DEFAULT\SF21.V12 130W 120W 100W 60 N 110W 80W 70W 50N 60W 60 N 89+7 60W <u>89+1</u> 40 N 89 87 85 50N 83 NI 2005: 65 Qs 70W CCIR coefficients -127 \$ 40x 40 gridsize 40 N -10^B -132115 S7 in New England and Florida 30 N 20N 80 120W 1000 110W 2000 20N 100W 3000 90W 4000 80W 5000km 130W r NTIA/ITS

Tx location to grid of Rx

120W

110W

100W

60 N

130W

AREADATA\DEFAULT\SF21.V16

AREADATA\DEFAULT\SF21.V17

AREADATA\DEFAULT\SF21.V18

What About Power?

- Compare area-coverage plots for 20 meters at 18 UTC for 100 W and for 1500 W.
- And what about QRP ?

"Omnidirectional" Antennas

- The plots here have assumed "omnidirectional" antennas, a misnomer. This assumes that a directional antenna can actually be pointed at azimuth angles of interest.
- For flat terrain, I model antennas with *EZNEC* and then convert to 2D *VOAAREA* type *.11 files using *MultiNEC* by AC6LA.
- For complex terrains, I use *HFTA* and convert to a 2D *VOAAREA* *.11 file using *MAKEVOA*.
SAN FRANCISCO [3-el Yagi] 1.5kW 70deg 22ut 14.200MHz Nov 10ssn

Tx location to grid of Rx

AREADATA\default\temp.V11

Antenna pattern is "omnidirectional" (propagation is not...)

Customizing for Your Antennas

- What kind of area coverage do you get for your own antennas?
- I am very fortunate to use the super station at N6RO for Sweepstakes Phone.
- N6RO has Yagi stacks on 10, 15, 20 and 40 meters. These have significantly more gain than the 3-element Yagis in the previous plots.

Customizing for Your Antennas

- Directional patterns only work for flatground terrain presently.
- I model 3D type *.13 azimuth/elevation patterns using *MultiNEC* by AC6LA with *EZNEC*.

SAN FRANCISCO [N6R0_40Stk] 1.5kW 70deg 02ut 7.200MHz Nov 10ssn
SDBW
Tx location to grid of Rx
AREADATA\default\temp1.V21

40-Meter Stack at N6RO

This is the *only* way to take down two 4L40 Yagis and replace them with two new M² ones in one day!

35 ton crane with 145' reach –

N6RO, Oct 3, 2005

Planning for a Contest

- The following shows a few slides from a movie I made for myself to guide my band-changing decisions for the 2005 ARRL Sweepstakes phone contest.
- The number of QSOs made in the 2005 SS Phone contest are listed as well.

How Did Predictions Compare With Reality? 21 UTC on 15 Meters, N6RO Antennas

November 2005 Sweepstakes

Actual QSOs by N6BV in 2005 SS Phone, 21 UTC on 15 Meters

This format was generated using DX Atlas; courtesy K6TA/K6KO

20 m 22 UTC

Low-Freq. Problems in VOACAP

- Since 6/2/1999 *VOACAP* has produced signal predictions lower than its predecessor *IONCAP* on bands lower than 40 meters.
- The problem lies in a change in calculations made then for the loss through the E layer.
- VOA has no validation data below 5 MHz because they had no stations there.
- *CAPMan* does produce more believable low-frequency computations, but source code is gone.

About 18 dB difference on 80 meters for "I" version (standing for *IONCAP*).

SDBW AREADATA\default\6y2a-80.V11

Version 06.0209W

Tx location to grid of Rx

80 meters, after 6/2/99

Pre 6/2/99

Stronger signals into Europe are more believable from experience, ("I" version).

Low-Freq. Problems in VOACAP

- Even after retiring from government service, Greg Hand and George Lane, the people who helped develop *VOACAP*, have continued its development. Bless them!
- Greg will soon be posting a version of a new *VOACAP/VOAAREA* that includes the "I" option.

In Conclusion

- I've demonstrated some intuitive areacoverage predictions using *VOAAREA*.
- I have also touched on how to make customized antennas for *VOAAREA*.
- And by the way, the plots shown here involve a great deal of graphical manipulation by hand!